ASRT-139 21050101" into excel; the first two rows have text instead of numbers, It's data
To handle the issue of the first two rows having text instead of numbers in your dataset, you can manually convert these rows into numerical data or use formulas to ensure that these rows are recognized as numerical data. Here are some steps you can follow:
### Step 1: Convert the data into integers
If the first two rows of the dataset are meant to be numerical, but they are currently formatted as text, you can convert them to numerical data. Here's how:
```python
# Sample data
data = [
"21050101", "21050101", "21050101", "21050101", "21050101", "21050101", "21050101", "21050101", "21050101", "21050101", "21050101", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "210501", "21100101", "21100101", "21100101", "21100101", "21100101", "21100101", "21100101", "21100101", "21100101", "21100101", 21050101, 21050101, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 210 x50100", 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 21050100, 0; 22000101" = "2010/01/01'"
]
# Convert the first two rows into numerical data
for i in range(2):
data[i] = int(data[i])
```
### Step 2: Load the data
If you're planning to load this dataset into Excel, you can use a Python script to load the data into Excel. Here's how:
```python
import pandas as pd
# Create the DataFrame
df = pd.DataFrame(data, columns=["Data"])
# Write the DataFrame to Excel
pd.to_excel("report.xlsx", index=False)
```
### Step 3: Continue with the process
Once you've converted the first two rows into numerical data, you can proceed with the next steps in your Excel workflow. Make sure to follow these steps to ensure that your data is handled correctly:
- **Identify**: Ensure that all of the rows are meant to be numerical data.
- **Format**: Use formatting tools in Excel to ensure that the data is recognized as numerical data.
## Continue
With these processes in place, you can proceed to work with the data in Excel. The next steps would be to analyze or manipulate the data as desired.
2020年8月13日