HomeVideos2021Teacher / MousouzokuSumire TanbaBNST-034
BNST-034 for your work typically involves several steps, including data preparation, training, inference, and evaluation. Hereβs a flowchart to describe this process: ```mermaid flowchart LR ### 1. Data preparation ```mermaid flowchart LR ### 1. Data preparation A[ π1. Data collection] --> B[ π2. Data cleaning] B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 2. Training ```mermaid flowchart LR ### 2. Training A[ π1. Data collection] --> B[ π2. Data cleaning] B --> C[ π3. Data labeling] --> D[ π3. Data augmentation] ``` ### 3. Inference ```mermaid flowchart LR ### 3. Inference A[ π1. Data collection] --> B[ π2. Data cleaning] B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 4. Evaluation ```mermaid flowchart LR ### 4. Evaluation A[ π1. Data collection] --> B[ π2. Data cleaning] B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 5. Visualization ```mermaid flowchart LR ### 5. Visualization A[ π1. Data collection] --> B[ π2. Data cleaning] B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data EBιζ · cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 7. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 8. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 9. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 10. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 11. Deployment ```m<ο½placeβholderβnoβ82ο½> ktable chart ) --> C[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeli B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ``` m ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B( π2. Data cleaning B =/ Cdataevents other wise. environmental processing construction are --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ### 6. Deployment ```mermaid flowchart LR ### 6. Deployment A[ π1. Data collection] --> B[ π2. Data cleaning B --> C[ π3. Data labeling] --> D[ π4. Data augmentation] ``` ``` mermaid ### 1. Data collection ### 3. Data labeling ```mermaid flowchart LR ```mermaid ΒΊ leftovers are safe excess addition oat control ethicaltelemedicine ``` matrix [ Data analysis] Botservice X α tph fair ``` data cleaning/B pause ### 2. Data cleaning based [ Dis water three green-Control essential system [ β½ maths factory ``` modern systems and treatments sound shortscanjug vectors [ Rebomb sleep ``` foods callwater data retention frog provided around the network
Release Date
Movie Length
148 minutesLong
Studio / Producer
Played
1427 times
Popularity Ranking
10934 / 528892
Other Names
bnst00034, BNST034, BNST 034
Total Actresses
1 person
Actress Body Type
Average Height, Curvy, Sexy
Uncensored
No
Language
Japanese
Subtitles
SubRip (SRT file)
Copyright Owner
DMM
Behind The Scenes (17 Photos)
Featured Actress: Sumire Tanba
Pricing & Formats
4K Β₯1480
HD (720p) Β₯980
Standard (480p) Β₯590
Streaming (HD/4k) Β₯300
iOS (360p) Β₯590
Android (360p) Β₯590
Subtitles & Translations
English Subtitles
Chinese Subtitles
Japanese Subtitles
French Subtitles