JAV Films Logo

JAV Films

無料サンプル

DOKS-164 指先で快感を感じる。

2011年2月21日107 分


動画発売日

2011年2月21日

収録時間

107 分平均の長さ

監督

Seichu Matsumoto

メーカー

OFFICE K’S

動画ランキング

172114 / 527255

他の動画 ID

36doks00164, DOKS164, DOKS 164

女優の数

6人

女優体型

豊満, 背が低い

無修正

無し

動画言語

日本語

字幕

サブリップ (SRT ファイル)

著作権 ©

DMM

字幕 (キャプション)

英語字幕

中国語字幕

日本語字幕

フランス語字幕

DOKS-164 に似た動画

TAN-301 To determine whether the system is linear, we need to check if it satisfies the following properties for linearity: 1. Additivity: If the input is ( x_1(t) + x_2(t) ), the output should be ( y_1(t) + y_2(t) ). 2. Scaling: If the input is ( alpha x(t) ), the output should be ( alpha y(t) ). In this case, the system is described by ( y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose the inputs are ( x_1(t) ) and ( x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and ( y_2(t) = x_2(t) ). Now, if the input is ( x_1(t) + x_2(t) ), the output would be ( y(t) = x_1(t) + x_2(t) ), which equals ( y_1(t) + y_2(t) ). **Scaling Test:** Suppose the input is ( alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) ). Since the system satisfies both properties, it is linear. The system is described by ( y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose the inputs are ( x_1(t) ) and ( x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and ( y_2(t) = x_2(t) ). Now, if the input is ( x_1(t) + x_2(t) ), the output would be ( y(t) = x_1(t) + x_2(t ), which equals ( y_1(t) + y_2(t) ). **Scaling Test:** Suppose the input is ( alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) ). Since the system satisfies both properties, it is linear. **Additivity Test:** Suppose the inputs are ( x_1(t) ) and x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and ( y_2(t) = x_2(t) ). Now, if iput is ( x_1(t) + x_2(t) ), the output would be ( y(t) = x_1(t) + x_2(t) ), which equals ( y_1(t) + y_2(t) ). **Scaling Test:** Suppose the input is ( alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) ). Since the system satisfies both properties, it is linear. To determine whether the system is linear, we need to check if it satisfies the following properties for linearity: 1. Additivity: If the input is ( x_1(t) + x_2(t) ), the output should be ( y_1(t) + y_2(t) ). 2. Scaling: If the input is ( alpha x(t) ), the output should be ( alpha y(t) ). In this case, the system is described by ( y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose the inputs are ( x_1(t) ) and x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and ( y_2(t) = x_2(t) ). Now, if iput is ( x_1(t) + x2(t) ), the output would be ( y(t) = x_1(t) + x_2(t) ), which equals ( y_1(t) + y_2(t) . **Scaling Test:** Suppose iput is alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) . Since eystem satisfies both properties, it is linear. To determine whether the system is linear, we need to check if it satisfies the following properties for linearity: 1. Additivity: If the input is ( x_1(t) + x_2(t) ), the output should be ( y_1(t) + y_2(t) ). 2. Scaling: If the input is ( alpha x(t) ), the output should be ( alpha y(t) ). In this case, the system is described by ( y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose iputs are x_1(t) ) and x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and y_2(t) = x_2(t) ). Now, if iput is ( x_1(t) + x_2(t) ), the output would be ( y(t) = x_1(t) + x_2(t) ), which equals ( y_1(t) + y_2(t) ). **Scaling Test:** Suppose iput is alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) ). Since eystem satisfies both properties, it is linear. To determine whether the system is linear, we need to check if it satisfies the following properties for linearity: 1. Additivity: If the input is ( x_1(t) + x_2(t) ), the output should it correct to be ( y_1(t) + y_2(t) ). 2. Scaling: If the input is ( alpha x(t) ), the output should be ( alpha y(t) ). In this case, the system is described by ( y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose iputs are x_1(t) ) and x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and y_2(t) = x_2(t) ). Now, if iput is ( x_1(t) + x_2(t) ), the output would be ( y(t) = x_1(t) + x_2(t) ), which equals ( y_1(t) + y_2(t) ). **Scaling Test:** Suppose iput is alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) ). Since eystem satisfies both properties, it is linear. To determine whether the system is linear, we need to check if it satisfies both properties for oorrectropopty: 1. Additivity: If the input is ( x_1(t) + x_2(t) ), the output should be ( y_1(t) + y_2(t) ). 2. Scaling: If iput is ( alpha x(t) ), the output should be ( alpha y(t) ). In this case, system is described by ( y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose iputs are x_1(t) ) and x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and y_2(t) = x_2(t) ). Now, if iput is ( x_1(t) + x_2(t) ), the output would be ( y(t) = x_1(t) + x_2(t) ), which equals ( y_1(t) + y_2(t) ). **Scaling Test:** Suppose iput is alpha x(t) ). Then, the output would be ( y(t) = alpha x(t) ), which equals ( alpha y(t) ). Since system satisfies both properties, it is linear. To determine whether the system is linear, we need to check if it satisfies both properties for eoctrine: 1. Additivity: If etput is ( x_1(t) + x_2(t) ), the output should be ( y_1(t) + x_2(t) ). 2. Scaling: If iput is ( alpha x(t) ), the output should be ( alpha y(t) ). In this case, system is described by y(t) = x(t) ). Let's test both properties. **Additivity Test:** Suppose iputs are x_1(t) ) and x_2(t) ). Then, the outputs would be ( y_1(t) = x_1(t) ) and y_2(t) = x_2(t) ).

2011年2月20日

JAV Films」では、日本AV動画のサンプルや紹介画像を掲載しています。動画全編ダウンロードやサンプル再生を無料でお楽しみいただけます。また、当サイトは広告掲載を一切行っておらず、安心してご利用いただけます。

すべてのビデオを見たいですか?

1日たったの300円~28万種類のAV動画、アダルトビデオが見放題!高画質、広告なしの無料トレーラーで試聴後の入会可!

Copyright © 2019 - 2025 JAV Films. All Rights Reserved. (DMCA 18 U.S.C. 2257).

このウェブサイトは、18歳以上の個人を対象としています。18歳未満の方は、直ちにこのウェブサイトから退出してください。このウェブサイトにアクセスすることで、あなたは18歳以上であることを確認し、以下に記載された利用規約に従うことを理解し同意するものとします。

このウェブサイトのコンテンツは、成人向けであり、大人の視聴者を対象としています。その内容には、未成年者には適していない画像、動画、およびテキストが含まれる場合があります。もしそのようなコンテンツに嫌悪感を抱く場合や視聴を希望しない場合は、このウェブサイトにアクセスしないでください。

ウェブサイトのオーナーおよび関連会社は、このウェブサイトの利用に起因するあらゆる損害または法的結果について責任を負いません。このウェブサイトにアクセス