J
AV
Films
English
English
中文
日本語
主页
成人影片
所有影片
热门影片
新版本
即将推出
今年 (2025)
去年 (2024)
免费预告片
有字幕
我收藏的影片
出演
DMCA
工作室
所有影片工作室
S1 No.1 Style
MOODYZ
SOD Create
MADONNA
Attackers
OPPAI
E-BODY
Venus
Ruby
Alice Japan
Prestige
ThePornDude
类别
巨乳
集體顏射
不忠的妻子
女牛仔
餡餅
惡魔
濫交
噴水
制服
處女
所有类别
登录 / 注册
登录 / 注册
主页
成人影片
所有影片
热门影片
新版本
即将推出
今年 (2025)
去年 (2024)
有字幕
工作室
类别
出演
联系
DMCA
登出
"
HAHD
"日本AV搜索.
影片关键词"
HAHD
":
HAHD-002
- 素人投稿2
2010年5月25日
HAHD-001
- 普通用户投稿 1</s>In the expression ( frac{x}{2} + frac{y}{3} = frac{z}{5} ), where ( x, y, z ) are positive integers, find the value of ( x + y + z ).To solve the equation ( frac{x}{2} + frac{y}{3} = frac{z}{5} ), we can first find a common denominator to rewrite the equation with all terms on the left-hand side:[ frac{2x + 3y}{6} = frac{5z}{15} ]Since ( 6 ) and ( 15 ) are both divisible by 3, we can divide both sides of the equation by 3 to simplify:[ frac{2x + 3y}{2} = frac{5z}{5} ]This simplifies to:[ 2x + 3y = 5z ]Now, we have a linear equation with integer coefficients. To find integer solutions for ( x, y, z ), we can use the Diophantine equation approach. Since the sum of the coefficients on the right-hand side (the terms with ( x ) and ( y )) is ( 2 + 3 = 5 ), we can try to find a value for ( z ) such that when multiplied by 5, the result has a 0 in the tens place (to ensure that ( 2x + 3y ) can be 5 times an integer).The easiest choice for ( z ) is ( z = 10 ), because when multiplied by 5, it results in ( 50 ), which is convenient for balancing the equation. So, we substitute ( z = 10 ) into the equation:[ 2x + 3y = 5 cdot 10 ][ 2x + 3y = 50 ]Now, we can use trial and error to find integer values for ( x ) and ( y ) that satisfy the equation. One such solution is ( x =
2010年5月7日