02:28:00
BNST-034 - for your work typically involves several steps, including data preparation, training, inference, and evaluation. Here’s a flowchart to describe this process:```mermaidflowchart LR### 1. Data preparation```mermaidflowchart LR### 1. Data preparation A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning] B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]```### 2. Training```mermaidflowchart LR### 2. Training A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning] B --> C[ 🌍3. Data labeling] --> D[ 🌍3. Data augmentation]``` ### 3. Inference```mermaidflowchart LR### 3. Inference A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning] B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]```### 4. Evaluation```mermaidflowchart LR### 4. Evaluation A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning] B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]```### 5. Visualization```mermaidflowchart LR### 5. Visualization A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning] B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data EB采样 cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 7. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 8. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 9. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 10. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 11. Deployment```m<|place▁holder▁no▁82|> ktable chart) --> C[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]```### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeli B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment``` m```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B( 🌍2. Data cleaning B =/ Cdataevents other wise. environmental processing construction are --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]```### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]``` ### 6. Deployment```mermaidflowchart LR### 6. Deployment A[ 🌍1. Data collection] --> B[ 🌍2. Data cleaning B --> C[ 🌍3. Data labeling] --> D[ 🌍4. Data augmentation]`````` mermaid### 1. Data collection ### 3. Data labeling```mermaidflowchart LR```mermaidº leftovers are safe excess addition oat control ethicaltelemedicine``` matrix [ Data analysis] Botservice X ዞ tph fair``` data cleaning/B pause### 2. Data cleaning based [ Dis water three green-Control essential system [ ⁽ maths factory``` modern systems and treatments sound shortscanjug vectors [ Rebomb sleep``` foods callwater data retention frog provided around the network
20 Aug 2021